If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-149x+252=0
a = 6; b = -149; c = +252;
Δ = b2-4ac
Δ = -1492-4·6·252
Δ = 16153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-149)-\sqrt{16153}}{2*6}=\frac{149-\sqrt{16153}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-149)+\sqrt{16153}}{2*6}=\frac{149+\sqrt{16153}}{12} $
| 1/3(f+5)=10 | | 5(x+1)=3(x+9) | | -15=5(x-9) | | -(3x-8)=2(x-4)+1 | | v/3-10=8 | | |2t+5|=45 | | s-62=34 | | 4m+(8/9)=67 | | x+120≤64;x=–56 | | x+64≤120;x=56 | | 32=z-22 | | 0.2x^2+2.1=3.4 | | 2(x+3.50)=20.60 | | 8x+9x=0 | | 2x+3.50=20.60 | | 2x+3.50=$20.60 | | 2x+$3.50=$20.60 | | 0.3(0.1x–0.5)=1.2 | | 2(x+$3.50)=$20.60 | | r+44=54 | | 11x/5=8 | | 0=-10n-5n^2 | | 8w=−32 | | .20(x+8)=140 | | 70x=52 | | m=4(19) | | 11x/5=22 | | j-70=17 | | x=4+1/9 | | q/4=10 | | d=79-20 | | -4n-8n=-8-8n |